
TEKS
Course Title 

(a or b), if applicable, e.g. 

Game Design 1a

Unit Name(s)
Lesson(s) 

Numbers

(1) Employability. The student identifies various employment 

opportunities in the computer science field. The student is expected 

to:

(A) identify job opportunities and accompanying job duties and tasks;
Introduction to Programming 1a: 

Introduction

Unit 8: Skill Spotlight: A World 

of Programming
Lesson 3, Lab

(B) examine the role of certifications, resumes, and portfolios in the 

computer science profession;

Introduction to Programming 1a: 

Introduction

Unit 8: Skill Spotlight: A World 

of Programming
Lesson 3

(C) employ effective technical reading and writing skills;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 8: Skill Spotlight: Involved 

and Informed
Lesson 2, Lab

(D) employ effective verbal and non-verbal communication skills;
Introduction to Programming 1a: 

Introduction

Unit 8: Skill Spotlight: A World 

of Programming
Lesson 2

(E) solve problems and think critically;
Introduction to Programming 1a: 

Introduction
Unit 3: Problems and Solutions

All Lessons 

Associated

(F) demonstrate leadership skills and function effectively as a team 

member;

Introduction to Programming 1a: 

Introduction

Unit 8: Skill Spotlight: A World 

of Programming
Lesson 2

(G) demonstrate an understanding of legal and ethical responsibilities in 

relation to the field of computer science;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 6: Legal and Ethical 

Computing
Lessons 1-3

(H) demonstrate planning and time-management skills; and
Introduction to Programming 1a: 

Introduction
Unit 3: Problems and Solutions Lab

(I) compare university computer science programs.

(2) Communication and collaboration. The student communicates and 

collaborates with peers to contribute to his or her own learning and 

the learning of others. The student is expected to:

(A) participate in learning communities as a learner, initiator, 

contributor, and teacher/mentor; and

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 8: Skill Spotlight: Involved 

and Informed
Activity

(B) seek and respond to advice from peers, educators, or professionals 

when evaluating quality and accuracy of the student's product.

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 8: Skill Spotlight: Involved 

and Informed
Activity

(3) Programming style and presentation. The student utilizes proper 

programming style and develops appropriate visual presentation of 

data, input, and output. The student is expected to:

(A) create and properly label and display output;
Introduction to Programming 1a: 

Introduction
Unit 4: A Deep Dive with Data Activity

State Standards: Computer Science 1
Date of Standards: 2021

State: TX
State Course Title: Computer Science 1
State Course Code: 127.789

eDynamic Learning Course Title: Programming 1a/1b



(B) create interactive input interfaces, with relevant user prompts, to 

acquire data from a user such as console displays or Graphical User 

Interfaces (GUIs);

Introduction to Programming 1a: 

Introduction
Unit 6: The Data Files Lessons 2, 3

(C) write programs with proper programming style to enhance the 

readability and functionality of a code by using descriptive identifiers, 

internal comments, white space, spacing, indentation, and a 

standardized program style;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 3: Abstraction Activity

(D) format data displays using standard formatting styles; and
Introduction to Programming 1a: 

Introduction
Unit 6: The Data Files Lessons 2, 3

(E) display simple vector graphics using lines, circles, and rectangles.
Introduction to Programming 1a: 

Introduction
Unit 7: Running the Numbers Lesson 3

(4) Critical thinking, problem solving, and decision making. The student 

uses appropriate strategies to analyze problems and design 

algorithms. The student is expected to:

(A) use program design problem-solving strategies to create program 

solutions;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 1: Designing Programs Activity

(B) create a high-level program plan using a visual tool such as a flow 

chart or graphic organizer;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 2: Plan for Success Lessons 1, 2

Introduction to Programming 1a: 

Introduction
Unit 3: Problems and Solutions Lesson 2

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 2: Plan for Success Lessons 1, 2

(D) identify the data types and objects needed to solve a problem;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 3: Abstraction Activity

(E) identify reusable components from existing code;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 1: Designing Programs Lesson 3

(F) design a solution to a problem;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 1: Designing Programs Activity

(G) code a solution from a program design;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 3: Abstraction Activity

(H) identify error types, including syntax, lexical, run time, and logic;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 5: Running the Tests Lesson 2

(I) test program solutions with valid and invalid test data and analyze 

resulting behavior;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 5: Running the Tests Lesson 3

(J) debug and solve problems using error messages, reference materials, 

language documentation, and effective strategies;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 5: Running the Tests Lessons 2, 3

(K) explore common algorithms such as finding greatest common 

divisor, finding the biggest number out of three, finding primes, making 

change, and finding the average;

Introduction to Programming 1a: 

Introduction
Unit 7: Running the Numbers Lesson 2

(L) create program solutions that address basic error handling such as 

preventing division by zero and type mismatch;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 1: Designing Programs Lab

(M) select the most appropriate construct for a defined problem;
Introduction to Programming 1a: 

Introduction
Unit 5: All About Algorithms Activity

(C) identify the tasks and subtasks needed to solve a problem;



(N) create program solutions by using the arithmetic operators to create 

mathematical expressions, including addition, subtraction, 

multiplication, real division, integer division, and modulus division;

Introduction to Programming 1a: 

Introduction
Unit 3: Problems and Solutions Activity

(O) create program solutions to problems using available mathematics 

library functions or operators, including absolute value, round, power, 

square, and square root;

Introduction to Programming 1a: 

Introduction
Unit 7: Running the Numbers Lesson 2, Lab

(P) develop program solutions that use assignment;
Introduction to Programming 1a: 

Introduction
Unit 3: Problems and Solutions Lesson 3

(Q) develop sequential algorithms to solve non-branching and non-

iterative problems;

Introduction to Programming 1a: 

Introduction
Unit 5: All About Algorithms Lesson 1

(R) develop algorithms to decision-making problems using branching 

control statements;

Introduction to Programming 1a: 

Introduction
Unit 5: All About Algorithms Lesson 2

(S) develop iterative algorithms and code programs to solve practical 

problems;

Introduction to Programming 1a: 

Introduction
Unit 5: All About Algorithms Lesson 3

(T) demonstrate proficiency in the use of the relational operators;
Introduction to Programming 1a: 

Introduction
Unit 5: All About Algorithms Lesson 2

(U) demonstrate proficiency in the use of the logical operators; and
Introduction to Programming 1a: 

Introduction
Unit 5: All About Algorithms Lesson 2

(V) generate and use random numbers.
Introduction to Programming 1a: 

Introduction
Unit 5: All About Algorithms Lesson 3

(5) Digital citizenship. The student explores and understands safety, 

legal, cultural, and societal issues relating to the use of technology and 

information. The student is expected to:

(A) discuss intellectual property, privacy, sharing of information, 

copyright laws, and software licensing agreements;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 6: Legal and Ethical 

Computing
Lessons 1-3

(B) model ethical acquisition and use of digital information;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 6: Legal and Ethical 

Computing
Lesson 3

(C) demonstrate proper digital etiquette, responsible use of software, 

and knowledge of acceptable use policies;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 6: Legal and Ethical 

Computing
Lesson 1

(D) investigate measures, including strong passwords, pass phrases, and 

other methods of authentication, as well as virus detection/prevention 

for privacy and security; and

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 7: Safe and Secure
All Lessons 

Associated

(E) investigate computing and computing-related advancements and the 

social and ethical ramifications of computer usage.

Introduction to Programming 1a: 

Introduction

Unit 8: Skill Spotlight: A World 

of Programming
Lesson 1

(6) Technology operations, systems, and concepts. The student 

understands technology concepts, systems, and operations as they 

apply to computer science. The student is expected to:

(A) demonstrate knowledge of major hardware components, including 

primary and secondary memory, a central processing unit (CPU), and 

peripherals;

Introduction to Programming 1a: 

Introduction
Unit 4: A Deep Dive with Data Lesson 1

(B) differentiate between current programming languages, discuss the 

general purpose for each language, and demonstrate knowledge of 

specific programming terminology and concepts and types of software 

development applications;

Introduction to Programming 1a: 

Introduction
Unit 2: Speaking the Language Lessons 1, 2

(C) differentiate between a high-level compiled language and an 

interpreted language;

Introduction to Programming 1a: 

Introduction
Unit 2: Speaking the Language Lesson 3



Introduction to Programming 1a: 

Introduction
Unit 2: Speaking the Language Lesson 2, Lab

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 3: Abstraction Lab

(E) differentiate between local and global scope access variable 

declarations;

Introduction to Programming 1b: 

Problem Solving Through 

Programming

Unit 3: Abstraction Lesson 3

(F) encapsulate data and associated subroutines into an abstract data 

type;

Introduction to Programming 1a: 

Introduction
Unit 7: Running the Numbers Lesson 4

(G) create subroutines that do not return values with and without the 

use of arguments and parameters;

Introduction to Programming 1a: 

Introduction
Unit 6: The Data Files Activity

(H) create subroutines that return typed values with and without the 

use of arguments and parameters;

Introduction to Programming 1a: 

Introduction
Unit 6: The Data Files Activity

(I) create calls to processes passing arguments that match parameters 

by number, type, and position;

Introduction to Programming 1a: 

Introduction
Unit 6: The Data Files Lab

(J) compare data elements using logical and relational operators;
Introduction to Programming 1a: 

Introduction
Unit 4: A Deep Dive with Data Lesson 1

(K) identify and convert binary representation of numeric and 

nonnumeric data in computer systems using American Standard Code 

for Information Interchange (ASCII) or Unicode;

Introduction to Programming 1a: 

Introduction
Unit 4: A Deep Dive with Data Lesson 2

(L) identify finite limits of numeric data such as integer wrap around and 

floating point precision;

Introduction to Programming 1a: 

Introduction
Unit 7: Running the Numbers Lesson 2

(M) perform numerical conversions between the decimal and binary 

number systems and count in the binary number system;

Introduction to Programming 1a: 

Introduction
Unit 7: Running the Numbers Lesson 1

(N) choose, identify, and use the appropriate data types for integer, 

real, and Boolean data when writing program solutions;

Introduction to Programming 1a: 

Introduction
Unit 6: The Data Files Activity

(O) analyze the concept of a variable, including primitives and objects;
Introduction to Programming 1a: 

Introduction
Unit 2: Speaking the Language Lessons 1, 3

(P) represent and manipulate text data, including concatenation and 

other string functions;

Introduction to Programming 1a: 

Introduction
Unit 4: A Deep Dive with Data Lesson 3

(Q) identify and use the structured data type of one-dimensional arrays 

to traverse, search, and modify data;

Introduction to Programming 1a: 

Introduction
Unit 7: Running the Numbers Lesson 4

(R) choose, identify, and use the appropriate data type or structure to 

properly represent the data in a program problem solution; and

Introduction to Programming 1a: 

Introduction
Unit 7: Running the Numbers Lesson 4

(S) compare strongly typed and un-typed programming languages.
Introduction to Programming 1a: 

Introduction
Unit 2: Speaking the Language Lesson 3

(D) identify and use concepts of object-oriented design;


